Abstract

LMC (local mate competition) was first introduced by W. D. Hamilton to explain extraordinary female-biased sex ratios observed in a variety of insects and mites. In the original model, the population is subdivided into an infinite number of colonies founded by a fixed number of inseminated females producing the same very large number of offspring. The male offspring compete within the colonies to inseminate the female offspring and then these disperse at random to found new colonies. An unbeatable sex ratio strategy is found to be female-biased. In this paper, the effects of having colonies of random size and foundresses producing a random finite number of offspring are considered. The exact evolutionarily stable strategy (ESS) sex ratio is deduced and comparisons with previous approximate or numerical results are made. As the mean or the variance of brood size increases, the ESS sex ratio becomes more female-biased. An increase in the variance of colony size increases the ESS proportion of males when the mean brood size and colony size are both small, but decreases this proportion when the mean brood size or the mean colony size is large.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call