Abstract
Quorum sensing (QS) allows bacterial cells to sense changes in local cell density and, hence, to regulate multicellular processes, including biofilm formation, regulation of virulence, and horizontal gene transfer. While, traditionally, QS was thought to involve the exchange of extracellular signal molecules free in solution, recent experiments have shown that for some bacterial systems a substantial fraction of signal molecules are packaged and delivered in extracellular vesicles. How the packaging of signal molecules in extracellular vesicles influences the ability of cells to communicate and coordinate multicellular behaviors remains largely unknown. We present here a stochastic reaction-diffusion model of QS that accounts for the exchange of both freely diffusing and vesicle-associated signal molecules. We find that the delivery of signal molecules via extracellular vesicles amplifies local fluctuations in the signal concentration, which can strongly affect the dynamics and spatial range of bacterial communication. For systems with multiple bacterial colonies, extracellular vesicles provide an alternate pathway for signal transport between colonies, and may be crucial for long-distance signal exchange in environments with strong degradation of free signal molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.