Abstract

The stochastic response of the FitzHugh-Nagumo model is addressed using a modified Van der Pol (VDP) equation with fractional-order derivative and Gaussian white noise excitation. Via the generalized harmonic balance method, the term related to fractional derivative is splitted into the equivalent quasi-linear dissipative force and quasi-linear restoring force, leading to an equivalent VDP equation without fractional derivative. The analytical solutions for the equivalent stochastic equation are then investigated through the stochastic averaging method. This is thereafter compared to numerical solutions, where the stationary probability density function (PDF) of amplitude and joint PDF of displacement and velocity are used to characterized the dynamical behaviors of the system. A satisfactory agreement is found between the two approaches, which confirms the accuracy of the used analytical method. It is also found that changing the fractional-order parameter and the intensity of the Gaussian white noise induces P-bifurcation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call