Abstract

This paper studies the rotational motion of a parametrically excited pendulum, dynamics of which is governed by a stochastic nonlinear Mathieu equation. The interest to this problem is based on the fact that this motion may be used to harness wave energy, capturing the heaving motion of waves. Thus a narrow band excitation is used, which is modeled as a harmonic process with random phase modulations. It has been established earlier that a relatively large values of noise intensity deteriorate stability of the rotational motion, leading to vibrations. To obtain robust rotational motion a single-degree-of-freedom filter is used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.