Abstract

We study the effect of random disturbances on the three-dimensional Hindmarsh-Rose model of neural activity. In a parametric zone, where the only attractor of the system is a stable equilibrium, a stochastic generation of bursting oscillations is observed. For a sufficiently small noise, random states concentrate near the equilibrium. With an increase of the noise intensity, along with small-amplitude oscillations around the equilibrium, bursts are observed. The relationship of the noise-induced generation of bursts with system transitions from order to chaos is discussed. For a quantitative analysis of these stochastic phenomena, an approach based on the stochastic sensitivity function technique is suggested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.