Abstract
A new heuristic optimization algorithm is presented to solve the nonlinear optimization problems. The proposed algorithm utilizes a stochastic method to achieve the optimal point based on simplex techniques. A dual simplex is distributed stochastically in the search space to find the best optimal point. Simplexes share the best and worst vertices of one another to move better through search space. The proposed algorithm is applied to 25 well-known benchmarks, and its performance is compared with grey wolf optimizer (GWO), particle swarm optimization (PSO), Nelder-Mead simplex algorithm, hybrid GWO combined with pattern search (hGWO-PS), and hybrid GWO algorithm combined with random exploratory search algorithm (hGWO-RES). The numerical results show that the proposed algorithm, called stochastic dual simplex algorithm (SDSA), has a competitive performance in terms of accuracy and complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.