Abstract

AbstractDownscaling aims to link the behaviour of the atmosphere at fine scales to properties measurable at coarser scales, and has the potential to provide high resolution information at a lower computational and storage cost than numerical simulation alone. This is especially appealing for targeting convective scales, which are at the edge of what is possible to simulate operationally. Since convective scale weather has a high degree of independence from larger scales, a generative approach is essential. We here propose a statistical method for downscaling moist variables to convective scales using conditional Gaussian random fields, with an application to wet bulb potential temperature (WBPT) data over the UK. Our model uses an adaptive covariance estimation to capture the variable spatial properties at convective scales. We further propose a method for the validation, which has historically been a challenge for generative models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.