Abstract

A dislocation dynamical theory is developed for the formation of dipole dislocation patterns during cyclic plastic deformation in single glide. The stochastic dislocation dynamics adopted is suitable to account, in terms of a fluctuating effective medium, for the effects of long-range dislocation interactions on a mesoscopic scale. The theory can explain the occurrence of a matrix structure and persistent slip bands as a result of evolutionary processes, it gives the intrinsic strain amplitudes and the characteristic wavelength of these structures, and it allows for an interpretation of the structural changes associated with changes of the deformation conditions. Quantitative results are in good agreement with experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.