Abstract

The paper presents a discrete meso-scale model for fracture of concrete taking into account random spatial variability of material parameters. Beams of various sizes, with notches of various depths, are simulated numerically to study the combination of energetic and statistical size effects. A substantial part of material randomness is shown to be caused by random locations of the largest aggregates. Further randomness, due to random fluctuations of material parameters, is considered and an effect of introducing a spatially auto-correlated random field is analyzed. The results of the simulations are compared with recently published experimental data on concrete beams in three-point bending. The differences in the role of randomness in beams of various sizes, with different notch depths, are demonstrated, and differences in energy dissipation are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.