Abstract
We investigate a numerical behavior of robust deterministic optimal control problem subject to a convection-diffusion equation containing uncertain inputs. Stochastic Galerkin approach, turning the original optimization problem containing uncertainties into a large system of deterministic problems, is applied to discretize the stochastic domain, while a discontinuous Galerkin method is preferred for the spatial discretization due to its better convergence behavior for optimization problems governed by convection dominated PDEs. Error analysis is done for the state and adjoint variables in the energy norm, while the estimate of deterministic control is obtained in the L2-norm. Large matrix system emerging from the stochastic Galerkin method is addressed by the low-rank version of GMRES method, which reduces both the computational complexity and the memory requirements by employing Kronecker-product structure of the obtained linear system. Benchmark examples with and without control constraints are presented to illustrate the efficiency of the proposed methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.