Abstract

In this paper, we study properties of solutions to stochastic differential equations with Sobolev diffusion coefficients and singular drifts. The properties we study include stability with respect to the coefficients, weak differentiability with respect to starting points and the Malliavin differentiability with respect to sample paths. We also establish Bismut–Elworthy–Li’s formula for the solutions. As an application, we use the stochastic Lagrangian representation of incompressible Navier–Stokes equations given by Constantin–Iyer [Comm. Pure Appl. Math. 61 (2008) 330–345] to prove the local well-posedness of NSEs in $\mathbb{R}^{d}$ with initial values in the first-order Sobolev space $\mathbb{W}^{1}_{p}(\mathbb{R}^{d};\mathbb{R}^{d})$ provided $p>d$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.