Abstract

Stochastic Differential Equations (SDEs) are powerful mathematical tools used to model systems subject to random fluctuations. In physics, SDEs find widespread applications ranging from statistical mechanics to quantum field theory. This paper provides an in-depth exploration of the theoretical foundations of SDEs in physics, their applications, and their implications in understanding complex physical phenomena. We delve into the mathematical framework of SDEs, their numerical solutions, and their role in modeling various physical processes. Furthermore, we present case studies illustrating the practical relevance of SDEs in different branches of physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.