Abstract
Under general conditions, we devise a stochastic version of De Giorgi iteration scheme for semilinear stochastic parabolic partial differential equation of the form \[\partial_{t}u=\operatorname{div}(A\nabla u)+f(t,x,u)+g_{i}(t,x,u)\dot{w}^{i}_{t}\] with progressively measurable diffusion coefficients. We use the scheme to show that the solution of the equation is almost surely Holder continuous in both space and time variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.