Abstract

<p>Planetary flows and large scale circulation systems are characterised by an interaction between scales that range over several orders of magnitude, with contributions given by mesoscale and submesoscale dynamics. Resolving numerically  such interactions for realistic configuration is, however, far beyond reach. Any large-scale simulation must then rely on parameterizations of the effects of the small scales on  the large scales. In this work, a stochastic parameterization is proposed based on a decomposition of the flow in terms of a smooth-in-time large-scale contribution and a random fast-evolving uncorrelated small-scale part  accounting for  mesoscales and submesoscales unresolved eddies. This  approach, termed modelling under location uncertainty (LU) [4], relies on a stochastic version of Reynolds Transport Theorem to cast physically meaningful conservation principles in this scale-separated framework. Such a scheme has been successfully applied to several large-scale models of the  ocean dynamics [1, 2, 3, 5]. Here a LU version of the  hydrostatic primitive equations is  implemented within the  NEMO community code (<span role="link"><span role="link">https://www.nemo-ocean.eu</span></span>) with a data-driven approach to establish the spatial correlation of the fast evolving scales. In comparison to a corresponding deterministic counterpart, this stochastic large-scale representation  is shown to improve, in terms of the eastward jet resolution and variabilities, the  flow prediction of an idealized wind forced double gyre circulation. The results are assessed through several statistical criterion as well as an energy transfer analysis [2,5]. <br>[1] W. Bauer, P. Chandramouli, B. Chapron, L. Li, and E. Mémin. Deciphering the<br>role of small-scale inhomogeneity on geophysical flow structuration: a stochastic approach.<br>Journal of Physical Oceanography, 50(4):<span role="link">983-1003, 2020</span>.<br>[2] W. Bauer, P. Chandramouli, L. Li, and E. Mémin. Stochastic representation of<br>mesoscale eddy effects in coarse-resolution barotropic models. Ocean Modelling, 151:101646,<br>2020.<br>[3] Rüdiger Brecht, Long Li, Werner Bauer and Etienne Mémin. Rotating Shallow<br>Water Flow Under Location Uncertainty With a Structure-Preserving Discretization. Journal of<br>Advances in Modeling Earth Systems, 13, 2021MS002492.<br>[4], E. Mémin Fluid flow dynamics under location uncertainty,(2014), Geophysical & Astrophysical Fluid Dynamics, 108, 2, 119–146.<br>[5] V. Resseguier, L. Li, G. Jouan, P. Dérian, E. Mémin, B. Chapron, (2021), New trends in ensemble forecast strategy: uncertainty quantification for coarse-grid computational fluid dynamics, Archives of Computational Methods in Engineering.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.