Abstract

To realize the synergy between plug-in electric vehicles (PEVs) and wind power, this paper presents a hierarchical stochastic control scheme for the coordination of PEV charging and wind power in a microgrid. This scheme consists of two layers. Based on the non-Gaussian wind power predictive distributions, an upper layer stochastic predictive controller coordinates the operation of PEV aggregator and wind turbine. The computed power references are sent to the lower layer PEV and wind controllers for execution. The PEV controller optimally allots the aggregated charging power to individual PEVs. The wind controller regulates the power output of wind turbine. In this way, a power balance between supply and demand in a microgrid is achieved. The main feature of this scheme is that it incorporates the non-Gaussian uncertainty and partially dispatchability of wind power, as well as the PEV uncertainty. Numerical results show the effectiveness of the proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.