Abstract
We provide the first stochastic convergence rates for a family of adaptive quadrature rules used to normalize the posterior distribution in Bayesian models. Our results apply to the uniform relative error in the approximate posterior density, the coverage probabilities of approximate credible sets, and approximate moments and quantiles, therefore, guaranteeing fast asymptotic convergence of approximate summary statistics used in practice. The family of quadrature rules includes adaptive Gauss-Hermite quadrature, and we apply this rule in two challenging low-dimensional examples. Further, we demonstrate how adaptive quadrature can be used as a crucial component of a modern approximate Bayesian inference procedure for high-dimensional additive models. The method is implemented and made publicly available in the aghq package for the R language, available on CRAN. Supplementary materials for this article are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.