Abstract
Sample-based computation of the joint-time probability of collision motivates developing the Mahalanobis Shell Sampling (MSS) algorithm, which samples nondegenerate normal random variables, enabling rare event simulation without unduly penalizing sample size. The MSS method has unbiased estimators in sample mean and covariance, and it may achieve arbitrary precision when approximating probability measures. For Clohessy–Wiltshire relative orbital dynamics, computational MSS exponential rates of error convergence (in the mean-square-error sense) are shown to improve by one order of magnitude (for sample mean and covariance) over Monte Carlo; when reproducing the instantaneous probability of collision, MSS has a comparable mean-square-error convergence rate performance to Monte Carlo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.