Abstract

This paper presents an efficient data-driven building electricity management system that integrates a battery energy storage (BES) and photovoltaic panels to support decision-making capabilities. In this micro-grid (MG) system, solar panels and power grid supply the electricity to the building and the BES acts as a buffer to alleviate the uncertain effects of solar energy generation and the demands of the building. In this study, we formulate the problem as a Markov decision process and model the uncertainties in the MG system, using martingale model of forecast evolution method. To control the system, lookahead policies with deterministic/stochastic forecasts are implemented. In addition, wait-and-see, greedy and updated greedy policies are used to benchmark the performance of lookahead policies. Furthermore, by varying the charging/discharging rate, we obtain the different battery size $$ \left( {E_{s} } \right) $$ and transmission line power capacity $$ (P_{max} ) $$ accordingly, and then we investigate how the different $$ E_{s} $$ and $$ P_{max} $$ affect the performance of control policies. The numerical experiments demonstrate that the lookahead policy with stochastic forecasts performs better than the lookahead policy with deterministic forecasts when the $$ E_{s} $$ and $$ P_{max} $$ are large enough, and the lookahead policies outperform the greedy and updated policies in all case studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.