Abstract
The problem of control of linear discrete-time stochastic systems with faulty sensors is considered. The anomaly sensors are assumed to be modeled by a finite-state Markov chain whose transition probabilities are completely known. A passive type multiple model adaptive control (MMAC) law is developed by applying a new generalized pseudo-Bayes algorithm (GPBA), which is based on an n-step measurement update method. The present and other existing algorithms are compared through some Monte Carlo simulations. It is then shown that, for a case of only measurement noise uncertainty (i.e., a case when the certainty equivalence principle holds), the proposed MMAC has better control performance than MMAC’s based on using other existing GPBA’s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.