Abstract
We consider damped stochastic systems in a controlled (time-varying) potential and study their transition between specified Gibbs-equilibria states in finite time. By the second law of thermodynamics, the minimum amount of work needed to transition from one equilibrium state to another is the difference between the Helmholtz free energy of the two states and can only be achieved by a reversible (infinitely slow) process. The minimal gap between the work needed in a finite-time transition and the work during a reversible one, turns out to equal the square of the optimal mass transport (Wasserstein-2) distance between the two end-point distributions times the inverse of the duration needed for the transition. This result, in fact, relates non-equilibrium optimal control strategies (protocols) to gradient flows of entropy functionals via the Jordan-Kinderlehrer-Otto scheme. The purpose of this paper is to introduce ideas and results from the emerging field of stochastic thermodynamics in the setting of classical regulator theory, and to draw connections and derive such fundamental relations from a control perspective in a multivariable setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.