Abstract
Conditioning transmissivity realizations to state variable data is complex due to the non-linear dependence of transmissivity (or any univariate transform of it) and piezometric heads, concentrations or velocities. A review of the literature shows these complexities. The self-calibrating algorithm combines standard geostatistics and non-linear optimization in a way that allows the generation of multiple realizations of logtransmissivity, which are conditioned not only to logtransmissivity measurements but also to piezometric head and concentration data. The self-calibrating method is demonstrated in a two-dimensional synthetic exercise in which the trade-offs between transmissivity, piezometric head and concentration data are analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Stochastic Environmental Research and Risk Assessment (SERRA)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.