Abstract

We develop a method to synthesize any partially coherent source (PCS) with a genuine cross-spectral density (CSD) function using complex transmittance screens. Prior work concerning PCS synthesis with complex transmittance screens has focused on generating Schell-model (uniformly correlated) sources. Here, using the necessary and sufficient condition for a genuine CSD function, we derive an expression, in the form of a superposition integral, that produces stochastic complex screen realizations. The sample autocorrelation of the screens is equal to the complex correlation function of the desired PCS. We validate our work by generating, in simulation, three PCSs from the literature-none has ever been synthesized using stochastic screens before. Examining planar slices through the four-dimensional CSD functions, we find the simulated results to be in excellent agreement with theory, implying successful realization of all three PCSs. The technique presented herein adds to the existing literature concerning the generation of PCSs and can be physically implemented using a simple optical setup consisting of a laser, spatial light modulator, and spatial filter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.