Abstract
Stochastic spectral methods have achieved great success in the uncertainty quantification of many engineering problems, including electronic and photonic integrated circuits influenced by fabrication process variations. Existing techniques employ a generalized polynomial-chaos expansion, and they almost always assume that all random parameters are mutually independent or Gaussian correlated. However, this assumption is rarely true in real applications. How to handle non-Gaussian correlated random parameters is a long-standing and fundamental challenge. A main bottleneck is the lack of theory and computational methods to perform a projection step in a correlated uncertain parameter space. This paper presents an optimization-based approach to automatically determinate the quadrature nodes and weights required in a projection step, and develops an efficient stochastic collocation algorithm for systems with non-Gaussian correlated parameters. We also provide some theoretical proofs for the complexity and error bound of our proposed method. Numerical experiments on synthetic, electronic and photonic integrated circuit examples show the nearly exponential convergence rate and excellent efficiency of our proposed approach. Many other challenging uncertainty-related problems can be further solved based on this work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Components, Packaging and Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.