Abstract
The stochastic collocation method has recently received much attention for solving partial differential equations posed with uncertainty, i.e., where coefficients in the differential operator, boundary terms or right-hand sides are random fields. Recent work has led to the formulation of an adaptive collocation method that is capable of accurately approximating functions with discontinuities and steep gradients. These methods, however, usually depend on an assumption that the random variables involved in expressing the uncertainty are independent with marginal probability distributions that are known explicitly. In this work we combine the adaptive collocation technique with kernel density estimation to approximate the statistics of the solution when the joint distribution of the random variables is unknown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.