Abstract

We consider computing eigenspaces of an elliptic self-adjoint operator depending on a countable number of parameters in an affine fashion. The eigenspaces of interest are assumed to be isolated in the sense that the corresponding eigenvalues are separated from the rest of the spectrum for all values of the parameters. We show that such eigenspaces can in fact be extended to complex-analytic functions of the parameters and quantify this analytic dependence in a way that leads to convergence of sparse polynomial approximations. A stochastic collocation method on an anisoptropic sparse grid in the parameter domain is proposed for computing a basis for the eigenspace of interest. The convergence of this method is verified in a series of numerical examples based on the eigenvalue problem of a stochastic diffusion operator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.