Abstract

Stochastic collision electrochemistry is a hot topic in single molecule/particle research, which provides an opportunity to investigate the details of the single molecule/particle reaction mechanism that is always masked in ensemble-averaged measurements. In this work, we develop an electrochemical amplification strategy to monitor the electrocatalytic behavior of single G-quadruplex/hemin (GQH) for the reaction between hydrogen peroxide and hydroquinone (HQ) through the collision upon a gold nanoelectrode. The intrinsic peroxidase activities of single GQH were investigated by stochastic collision electrochemical measurements, giving further insights into understanding biocatalytic processes. Based on the unique catalytic activity of GQH, we have also designed a hybridization chain reaction strategy to detect miRNA-15 with good selectivity and sensitivity. This work provided a meaningful strategy to investigate the electrochemical amplification and the broad application for nucleic acid sensing at the single molecule/particle level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.