Abstract
A stochastic bound is a portfolio which stochastically dominates all alternatives in a reference portfolio set instead of a single alternative portfolio. An approximate bound is a portfolio which comes as close as possible to this ideal. To identify and analyze exact or approximate bounds, feasible approaches to numerical optimization and statistical inference are developed based on Linear Programming and subsampling. The use of reference sets and stochastic bounds is shown to improve investment performance in representative applications to enhanced benchmarking using equity industry rotation and equity index options combinations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.