Abstract

In this paper we develop a stochastic boundary conditions (SBC) for event-driven molecular dynamics simulations of a finite volume embedded within an infinite environment. In this method, we first collect the statistics of injection/ejection events in periodic boundary conditions (PBC). Once sufficient statistics are collected, we remove the PBC and turn on the SBC. In the SBC simulations, we allow particles leaving the system to be truly ejected from the simulation, and randomly inject particles at the boundaries by resampling from the injection/ejection statistics collected from the current or previous simulations. With the SBC, we can measure thermodynamic quantities within the grand canonical ensemble, based on the particle number and energy fluctuations. To demonstrate how useful the SBC algorithm is, we simulated a hard disk gas and measured the pair distribution function, the compressibility and the specific heat, comparing them against literature values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.