Abstract

Human body communication (HBC) uses the human body as the channel to transfer data. Extensive work has been done to characterize the human body channel for different HBC techniques and scenarios. However, statistical channel bioimpedance characterisation of human body channels, particularly under dynamic conditions, remains relatively understudied. This paper develops a stochastic fading bioimpedance model for the human body channel using Monte Carlo simulations. Differential body segments were modelled as 2-port networks using ABCD parameters which are functions of bioimpedance based body parameters modelled as random variables. The channel was then modelled as the cascade of these random 2-port networks for different combinations of probability distribution functions (PDFs) assumed for the bioimpedance-based body parameters. The resultant distribution of the cascaded body segments varied for the different assumed bioimpedance based body parameter distributions and differential body segment sizes. However, considering the distribution names that demonstrated a best fit (in the top 3 PDF rankings) with highest frequency under the varying conditions, this paper recommends the distribution names: Generalized Pareto for phase distributions and Log-normal for magnitude distributions for each element in the overall cascaded random variable ABCD matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call