Abstract

This paper aims to investigate Gaussian colored-noise-induced stochastic bifurcations and the dynamical influence of correlation time and noise intensity in a bistable Duffing-Van der Pol oscillator. By using the stochastic averaging method, theoretically, one can obtain the stationary probability density function of amplitude for the Duffing-Van der Pol oscillator and can reveal interesting dynamics under the influence of Gaussian colored noise. Stochastic bifurcations are discussed through a qualitative change of the stationary probability distribution, which indicates that system parameters, noise intensity, and noise correlation time, respectively, can be treated as bifurcation parameters. They also imply that the effects of multiplicative noise are rather different from that of additive noise. The results of direct numerical simulation verify the effectiveness of the theoretical analysis. Moreover, the largest Lyapunov exponent calculations indicate that P and D bifurcations have no direct connection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call