Abstract

Geophysical turbulent flows are characterized by their self-organization into large scale coherent structures, in particular parallel jets. We will present a theory in order to describe the effective statistics and dynamics of these jets. We prove that this closure is exact in the limit of a timescale separation between the forcing and the inertial dynamics, which is rare in a turbulent flow. The equation obtained describes the attractors for the dynamics (alternating zonal jets) and the relaxation towards those attractors. At first order, these attractors are the same as the ones obtained from a quasi-Gaussian closure, already studied. Our work thus justifies this approximation and the corresponding asymptotic limit. We also present a new, very efficient algorithm to compute the terms appearing in this equation. The theory also goes beyond the quasi-Gaussian approximation, and indeed it can also describe the stationary distribution of the jets (fluctuations and large deviations).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.