Abstract

Abstract This paper introduces a general class of stochastic volatility models that can serve as a basis for modeling and estimating simultaneous equation systems involving multivariate volatility processes. The class consists of processes obtained as monotone polynomial transformations of so-called stochastic autoregressive volatility (SARV) models. The class permits a flexible modeling of volatility and avoids strong distributional assumptions. Most of the standard stochastic volatility models are incorporated in the framework, including the lognormal autoregressive model and stochastic volatility generalizations of GARCH and EGARCH. General conditions for strict statinarity, ergodicity, and the existence of finite lower-order unconditional moments for SARV are established. Closed-form expressions for the lowerorder moments constitute the basis for the proposed generalized method of moments estimation procedure. As an illustration we consider an informationdriven model of the return volatility–trading volume system for financial assets. Parameters with structural interpretation are estimated and an extended Kalmanfilter procedure allows for the construction of volatility forecasts based on the bivariate return-volume series. Empirical results are based on daily NYSE data for IBM over 1973–1991.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.