Abstract
This study aimed to investigate movement accuracy of experienced cellists, the statistical properties of their note sequences during a reciprocal task, and the degree to which these movement characteristics depend on auditory feedback. Nine experienced cellists were asked to shift alternately between two notes using only their index finger to make contact with the string and fingerboard. Shifting sequences continued for two minutes at a rate of one note per second. The task was performed under two conditions: with auditory feedback (provided by the bow) or without auditory feedback (i.e., without the use of bow). When the bow was used, subjects had no difficulty in shifting between target notes with precision and stability. Some variability was present, but notes in these sequences were generally uncorrelated. The contact data and correlations in most bowed trials resembled those expected of a renewal process, a process in which successive values are statistically independent and identically distributed. Without the bow, subjects lost their ability to reach the same target positions accurately; contact locations tended to drift and had a random quality, indicating that without the bow subjects were uncertain of the target location in relation to the spatial location of their fingertips. Within these unbowed sequences, finger positions were highly correlated—within and between note sequences. In some trials without the bow, the statistical correlation patterns of the sequence were consistent with the expectations of a discrete Wiener process. Throughout our study, computer simulations of renewal and Wiener processes enabled us to determine the types of correlations to be expected from these theoretical models. The implications of the statistical results in terms of subject behavior are discussed.
Highlights
The motor activities of stringed instrument players, i.e., performers of instruments from the violin family, must be precisely controlled
Without the bow some note sequences had the characteristics of a discrete Wiener process, a theoretical random-walk process related to Brownian motion (Einstein, 1956; Bharucha-Reid, 1960; Chatfield, 1975)
CONCLUDING REMARKS Statistical properties of note sequences produced by experienced cellists have been modeled here using simulations of various random processes
Summary
The motor activities of stringed instrument players, i.e., performers of instruments from the violin family, must be precisely controlled. Without the bow subjects shifted between the same two target locations, but appeared to have lost any clear sense of the finger contact location in relation to the intended target locations These errors would have been perceived if the bow had been used. Without the bow some note sequences had the characteristics of a discrete Wiener process, a theoretical random-walk process related to Brownian motion (Einstein, 1956; Bharucha-Reid, 1960; Chatfield, 1975). This result seems to contradict the assertion by many musicians that in the absence of auditory feedback, years of practice and performance would still enable them to reach any target note with precision. The random characteristics of sequences generated without use of the bow may reflect a rational
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.