Abstract
We consider a discrete-time constrained Markov decision process under the discounted cost optimality criterion. The state and action spaces are assumed to be Borel spaces, while the cost and constraint functions might be unbounded. We are interested in approximating numerically the optimal discounted constrained cost. To this end, we suppose that the transition kernel of the Markov decision process is absolutely continuous with respect to some probability measure μ. Then, by solving the linear programming formulation of a constrained control problem related to the empirical probability measure μn of μ, we obtain the corresponding approximation of the optimal constrained cost. We derive a concentration inequality which gives bounds on the probability that the estimation error is larger than some given constant. This bound is shown to decrease exponentially in n. Our theoretical results are illustrated with a numerical application based on a stochastic version of the Beverton–Holt population model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.