Abstract
In this note, we study the consensus problem for multiagent systems with measurement noises. Different from the existing approach, the consensus problem is converted to a root finding problem for which the stochastic approximation theory can be applied. By choosing an appropriate regression function, we propose a consensus algorithm which is applicable to systems with more general measurement noise processes, including stationary autoregressive and moving average (ARMA) processes and infinite moving average (MA) processes. Further, we establish a relationship between the convergence rate and the exponent of the step size of the algorithm. Particularly, strong convergence rate for systems with a leader-follower topology is studied.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.