Abstract
AbstractNormally remote sensing image classification is performed pixelwise which produces a noisy classification. One way of improving such results is dividing the classification process in two steps. First, uniform regions by some criterion are detected and afterwards each unlabeled region is assigned to class of the “nearest” class using a so-called stochastic distance. The statistics are estimated by taking in account all the reference pixels. Three variations are investigated. The first variation is to assign to the unlabeled region a class that has the minimum average distance between this region and each one of reference samples of that class. The second is to assign the class of the closest reference sample. The third is to assign the most frequent class of the k closest reference regions. A simulation study is done to assess the performances. The simulations suggested that the most robust and simple approach is the second variation.Keywordsregion based classificationstochastic distancesimage simulationremote sensing
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.