Abstract
We focus on the probability distribution function (PDF) P(Δγ;γ) where Δγ are the measured strain intervals between plastic events in a athermal strained amorphous solids, and γ measures the accumulated strain. The tail of this distribution as Δγ→0 (in the thermodynamic limit) scales like Δγ(η). The exponent η is related via scaling relations to the tail of the PDF of the eigenvalues of the plastic modes of the Hessian matrix P(λ) which scales like λ(θ), η=(θ-1)/2. The numerical values of η or θ can be determined easily in the unstrained material and in the yielded state of plastic flow. Special care is called for in the determination of these exponents between these states as γ increases. Determining the γ dependence of the PDF P(Δγ;γ) can shed important light on plasticity and yield. We conclude that the PDF's of both Δγ and λ are not continuous functions of γ. In slowly quenched amorphous solids they undergo two discontinuous transitions, first at γ=0(+) and then at the yield point γ=γ(Y) to plastic flow. In quickly quenched amorphous solids the second transition is smeared out due to the nonexisting stress peak before yield. The nature of these transitions and scaling relations with the system size dependence of 〈Δγ〉 are discussed.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.