Abstract

Soft robots have high adaptability and safety due to their softness and are therefore widely used in human society. However, the controllability of soft robots to perform dexterous behaviors is insufficient when considering soft robots as alternative laborers for humans. Model-based control methods are effective for achieving dexterous behaviors. To build a suitable control model, problems based on specific properties, such as creep behavior and variable motions, must be addressed. In this paper, a lumped parameterized model for soft fingers with viscoelastic joints is established to address creep behavior. The parameters are expressed as distributions, which allows the model to account for motion variability. Furthermore, stochastic analyzes are performed based on the parameter distributions. The model results are consistent with the experimental results, and the model enables the investigation of the effects of various parameters related to robot variability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.