Abstract

This paper presents the axioms of a real time random walk on the set of states of a medium and some of their consequences, such as the asymptotic probabilities of the states. The states of the random walk coincide with those of the medium, and the transitions of the random walk are governed by a probability distribution on the set of token-events, together with a Poisson process regulating the arrivals of such events. We examine two special cases. The first is the medium on strict weak orders on a set of three elements, the second the medium of strict partial orders on the same set. Thus, in each of these cases, a state of the medium is a binary relation. We also consider tune in-and-out extensions of these two special cases. We review applications of these models to opinion poll data pertaining to the 1992 United States presidential election. Each strict weak order or strict partial order is interpreted as being the implicit or explicit opinion of some individual regarding the three major candidates in that election, namely, Bush, Clinton and Perot. In particular, the strict partial order applications illustrate our notion of a response function that provides the link between theory and data in situations where, in contrast to previous papers, the permissible responses do not span the entire set of permissible states of the medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.