Abstract
We study convergence in total variation of non-stationary Markov chains in continuous time and apply the results to the image analysis problem of object recognition. The input is a grey-scale or binary image and the desired output is a graphical pattern in continuous space, such as a list of geometric objects or a line drawing. The natural prior models are Markov point processes found in stochastic geometry. We construct well-defined spatial birth-and-death processes that converge weakly to the posterior distribution. A simulated annealing algorithm involving a sequence of spatial birth-and-death processes is developed and shown to converge in total variation to a uniform distribution on the set of posterior mode solutions. The method is demonstrated on a tame example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.