Abstract

We study convergence in total variation of non-stationary Markov chains in continuous time and apply the results to the image analysis problem of object recognition. The input is a grey-scale or binary image and the desired output is a graphical pattern in continuous space, such as a list of geometric objects or a line drawing. The natural prior models are Markov point processes found in stochastic geometry. We construct well-defined spatial birth-and-death processes that converge weakly to the posterior distribution. A simulated annealing algorithm involving a sequence of spatial birth-and-death processes is developed and shown to converge in total variation to a uniform distribution on the set of posterior mode solutions. The method is demonstrated on a tame example.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call