Abstract

Introduction The behavior of the atmosphere, oceans, and climate is intrinsically uncertain. The basic physical principles that govern atmospheric and oceanic flows are well known, for example, the Navier-Stokes equations for fluid flow, thermodynamic properties of moist air, and the effects of density stratification and Coriolis force. Notwithstanding, there are major sources of randomness and uncertainty that prevent perfect prediction and complete understanding of these flows. The climate system involves a wide spectrum of space and time scales due to processes occurring on the order of microns and milliseconds such as the formation of cloud and rain droplets to global phenomena involving annual and decadal oscillations such as the EL Nio-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) [5]. Moreover, climate records display a spectral variability ranging from 1 cycle per month to 1 cycle per 100, 000 years [23]. The complexity of the climate system stems in large part from the inherent nonlinearities of fluid mechanics and the phase changes of water substances. The atmosphere and oceans are turbulent, nonlinear systems that display chaotic behavior (e.g., [39]). The time evolutions of the same chaotic system starting from two slightly different initial states diverge exponentially fast, so that chaotic systems are marked by limited predictability. Beyond the so-called predictability horizon (on the order of 10 days for the atmosphere), initial state uncertainties (e.g., due to imperfect observations) have grown to the point that straightforward forecasts are no longer useful. Another major source of uncertainty stems from the fact that numerical models for atmospheric and oceanic flows cannot describe all relevant physical processes at once. These models are in essence discretized partial differential equations (PDEs), and the derivation of suitable PDEs (e.g., the so-called primitive equations) from more general ones that are less convenient for computation (e.g., the full Navier-Stokes equations) involves approximations and simplifications that introduce errors in the equations. Furthermore, as a result of spatial discretization of the PDEs, numerical models have finite resolution so that small-scale processes with length scales below the model grid scale are not resolved. These limitations are unavoidable, leading to model error and uncertainty. The uncertainties due to chaotic behavior and unresolved processes motivate the use of stochastic and statistical methods for modeling and understanding climate, atmosphere, and oceans. Models can be augmented with random elements in order to represent time-evolving uncertainties, leading to stochastic models. Weather forecasts and climate predictions are increasingly expressed in probabilistic terms, making explicit the margins of uncertainty inherent to any prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.