Abstract
In this article, we consider non-smooth time-dependent domains whose boundary is W1,p in time and single-valued, smoothly varying directions of reflection at the boundary. In this setting, we first prove existence and uniqueness of strong solutions to stochastic differential equations with oblique reflection. Secondly, we prove, using the theory of viscosity solutions, a comparison principle for fully nonlinear second-order parabolic partial differential equations with oblique derivative boundary conditions. As a consequence, we obtain uniqueness, and, by barrier construction and Perron’s method, we also conclude existence of viscosity solutions. Our results generalize two articles by Dupuis and Ishii to time-dependent domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.