Abstract
SummaryThis paper presents a stochastic algorithm for virtual network service mapping in virtualized network infrastructures, based on reinforcement learning (RL). An exact mapping algorithm in line with the current state of the art and based on integer linear programming is proposed as well, and the performances of the two algorithms are compared. While most of the current works in literature report exact or heuristic mapping methods, the RL algorithm presented here is instead a stochastic one, based on Markov decision processes theory. The aim of the RL algorithm is to iteratively learn an efficient mapping policy, which could maximize the expected mapping reward in the long run. Based on the review of the state of the art, the paper presents a general model of the service mapping problem and the mathematical formulation of the 2 proposed strategies. The distinctive features of the 2 algorithms, their strengths, and possible drawbacks are discussed and validated by means of numeric simulations in a realistic emulated environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.