Abstract

We establish well-posedness and maximal regularity estimates for linear parabolic SPDE in divergence form involving random coefficients that are merely bounded and measurable in the time, space, and probability variables. To reach this level of generality, and avoid any of the smoothness assumptions used in the literature, we introduce a notion of pathwise weak solution and develop a new harmonic analysis toolkit. The latter includes techniques to prove the boundedness of various maximal regularity operators on relevant spaces of square functions, the parabolic tent spaces Tp. Applied to deterministic parabolic PDE in divergence form with real coefficients, our results also give the first extension of Lions maximal regularity theorem on L2(R+×Rn)=T2 to Tp, for all 1−ε<p≤∞ in this generality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.