Abstract

Antarctic soil supports surface microbial communities that are dependent on ephemeral moisture. Understanding the response to availability of this resource is essential to predicting how the system will respond to climate change. The McMurdo Dry Valleys are the largest ice-free soil region in Antarctica. They are a hyper-arid polar desert with extremely limited moisture availability. Microbial colonization dominates this ecosystem but surprisingly little is known about how communities respond to changing moisture regimes. We utilized the natural model system provided by transiently wetted soil at lake margins in the Dry Valleys to interrogate microbial responses along a well-defined contiguous moisture gradient and disentangle responses between and within phyla. We identified a striking non-linear response among bacteria where at low moisture levels small changes resulted in a large impact on diversity. At higher moister levels community responses were less pronounced, resulting in diversity asymptotes. We postulate that whilst the main drivers of observed community diversity were deterministic, a switch in the major influence occurred from abiotic factors at low moisture levels to biotic interactions at higher moisture. Response between and within phyla was markedly different, highlighting the importance of taxonomic resolution in community analysis. Furthermore, we resolved apparent stochasticity at high taxonomic ranks as the result of deterministic interactions taking place at finer taxonomic and spatial scales. Overall the findings provide new insight on the response to moisture and this will be useful in advancing understanding of potential ecosystem responses in the threatened McMurdo Dry Valleys system.

Highlights

  • The McMurdo Dry Valleys of Antarctica constitute the largest ice-free region on the continent (SCAR, 2004)

  • We adopted a zonal sampling approach where soils were retrieved that matched visible delineations along linear transects extending across the hyporheic zone from the water’s edge at each sampling station: Zone (1) Saturated soil adjacent to water’s edge; Zone (2) Wet soil as indicated by dark coloration; Zone (3) Ephemerally wet soil, dry but with evidence for previous water indicated by surface evaporites; Zone (4) Dry soil with no indication of recent moisture

  • Defined Abiotic Gradients Occurred in the Hyporheic Zone

Read more

Summary

Introduction

The McMurdo Dry Valleys of Antarctica constitute the largest ice-free region on the continent (SCAR, 2004). Terrestrial meltwater ponds and streams occur where liquid water can accumulate throughout the Dry Valleys and these aquatic systems support extensive colonization dominated by cyanobacterial mats (Vincent et al, 1993; Vincent, 2002). The coupling of these meltwater features to water input/output result in expansive wetted hyporheic soils where water is retained over several weeks during the growing season (Gooseff et al, 2003) and creates favorable environments for microbial colonization (Ball and Levy, 2015). Developing an understanding of microbial response to moisture as the primary driver of habitability is essential to predicting potential impacts on Dry Valleys ecology in a landscape on the threshold of climate-induced change (Fountain et al, 2014)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call