Abstract
A stochastic Lotka-Volterra-type model for the interaction between the preys and the predators in a random environment is investigated. A self-competition mechanism within the prey population itself is also included. The effect of a random environment is modeled as random variations in the birth rate of the preys and the death rate of the predators. The stochastic averaging procedure of Stratonovich and Khasminskii is applied to obtain the probability distributions of the system state variables at the state of statistical stationarity. Asymptotic behaviors of the system variables are discussed, and the mean transition time from an initial state to a critical state is obtained. Effects on the ecosystem behaviors of the self-competition term, of the random variation in the prey birth rate, and of the random variation in the predator death rate are investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.