Abstract

This paper studies the stochastic behavior of the LMS and NLMS algorithms for a system identification framework when the input signal is a cyclostationary white Gaussian process. The input cyclostationary signal is modeled by a white Gaussian random process with periodically time-varying power. Mathematical models are derived for the mean and mean-square-deviation (MSD) behavior of the adaptive weights with the input cyclostationarity. These models are also applied to the non-stationary system with a random walk variation of the optimal weights. Monte Carlo simulations of the two algorithms provide strong support for the theory. Finally, the performance of the two algorithms is compared for a variety of scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.