Abstract

Switch mode electronic devices including Compact Fluorescent Lamp (CFL) and personal computers introduce capacitive power factor and current harmonics to the power system. Since middle 80’s and with the expanding use of nonlinear switch mode electronic loads, concerns arose about their effect on the power systems. In many IEEE documents, it is recommended to study the effect of electronic loads. Switch mode devices have a capacitive power factor between 55 and 93 percent (Allexperts), which can cause the increase of reactive power and power loss. The power loss in an office building wirings due to the current harmonics may be more than twice that of the linear load equipment (Key et al., 1996). Capacity of the transformers may be reduced more than 50 per cent in the presence of harmonic components (Schneider, 2009). CFL is a more efficient and durable replacement of the traditional incandescent lamp. Replacing traditional light bulbs by CFLs has several advantages including energy saving, increase in the capacity of plants and distribution transformers, peak shaving, less carbon emission and customer costs. On average, 20 percent of the total use of electricity is consumed in lighting (Michalik et al., 1997), (Tavanir). However, the increase in the number of electronic devices especially the CFLs in power systems must be carefully planned. Replacing the incandescent light bulbs with CFLs means replacing the system’s major Ohmic load with a capacitive load of high frequency harmonic components. In areas where lighting is a major use of electricity, e.g. places where natural gas or other fossil fuels are used for heating purposes, unplanned replacing of incandescent lamps with CFLs can introduce unexpected negative effects on the system. Also, in areas with a considerable number of other switch mode devices e.g. commercial areas with many office buildings it is important to plan the number of CFLs carefully. Most of the present studies on the effect of switch mode devices are based on tentative experiments and power factor measuring before and after using the devices in the power system (Gonos et al., 1999), and proposing a model for the network has been less discovered. In order for studying such effects, it is better to classify the system equipment to the substation equipment and consumer side equipment. Dramatic changes in power quality indicators of the distribution systems may cause disorders or even damages in the consumer equipments. Such disorders are especially important for sensitive appliances such as medical and hospital devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.