Abstract

Infectious diseases have for centuries been the leading causes of death and disability worldwide and the environmental fluctuation is a crucial part of an ecosystem in the natural world. In this paper, we proposed and discussed a stochastic SIRI epidemic model incorporating double saturated incidence rates and relapse. The dynamical properties of the model were analyzed. The existence and uniqueness of a global positive solution were proven. Sufficient conditions were derived to guarantee the extinction and persistence in mean of the epidemic model. Additionally, ergodic stationary distribution of the stochastic SIRI model was discussed. Our results indicated that the intensity of relapse and stochastic perturbations greatly affected the dynamics of epidemic systems and if the random fluctuations were large enough, the disease could be accelerated to extinction while the stronger relapse rate were detrimental to the control of the disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.