Abstract

Electromagnetic energy harvester has been widely concerned in recent years due to its advantages of small size and high sensing frequency. In this paper, the stochastic behaviors of a nonlinear electromagnetic energy harvesting system (NEEH) with fractional damping are investigated under the additive and multiplicative stochastic excitation. Firstly, by applying the stochastic average method to the NEEH system, the mean square of the output current, and the steady-state probability density of vibration amplitude, displacement and velocity are obtained. Meanwhile, the validity of the theoretical results is verified by comparing with the numerical results given by the Monte Carlo method. Secondly, by investigating the theoretical and numerical results, the influences of noise intensity and fractional order on the NEEH system are explored. It is obvious that a higher output voltage can be obtained by the larger intensity of the stochastic excitation, and the smaller coefficient and fractional order of the fractional damping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.